
Computer Graphics

6 - Projection, Mesh 1

Yoonsang Lee

Spring 2022

Midterm Exam Announcement

• Date & time: Apr 27, 09:30 - 10:30 am

• Place: IT.BT, 508

• Scope: Lecture 2 ~ 7

• You cannot leave the room until the end of the exam
even if you finish the exam earlier.

• Please bring your student ID card to the exam.

• If you are unable to take the offline exam (stay abroad,
corona confirmed, etc.), please contact the TA in advance.

– Chaejun Sohn (손채준조교), thscowns@gmail.com

Questions from Last Lecture

• why the order of matrix is MvpMpjMvMm which

newer matrix locate left side?

• why vertex processing's multiple order is reversed?

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

: Mpj

Viewport

transformation

: Mvp

Viewing

transformation

: Mv

Modeling

transformation

: Mm

po ps

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

ps = Mvp Mpj Mv Mm po

{0}

(global frame)

Directions of the "arrow"

M

(1st meaning)

→ : direction of geometry transformation (1st

meaning)

{1}

{0}

(global frame)

{1}

Directions of the "arrow"

M

p{0}=Mp{1}

→ : direction of geometry transformation (1st

meaning)

← : direction of change of the frame in which

the point is described (3rd meaning)

p{1} = (1, 1, 0)

(1st meaning)

(3rd meaning)

{0} to {2}

• 1) M1M2 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1M2 defines an {2} w.r.t. {0}

• 3) M1M2 transforms a point represented in {2} to the same point but
represented in {0}

– pb
{1}=M2pb

{2}, pb
{0}=M1pb

{1}=M1M2pb
{2}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)

(1st meaning)

Modeling Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Modeling

transformation

: Mm

po

pw

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

pw = Mm po

(3rd meaning)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

: Mpj

Viewport

transformation

: Mvp

Viewing

transformation

: Mv

Modeling

transformation

: Mm

po ps

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

ps = Mvp Mpj Mv Mm po

Topics Covered

• Projection Transformation

– Orthographic (Orthogonal) Projection

– Perspective Projection

• Viewport Transformation

• Mesh

– Polygon mesh & triangle mesh

– Representations for triangle meshes - Seperate triangle

– OpenGL vertex array

Projection Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation (covered in the last class)

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Review:Normalized Device Coordinates

• This coordinate system is

called normalized device

coordinates (NDC).

• And the space expressed

with NDC is called

canonical view volume.

• Remember that you could draw the triangle anywhere

in a 2D square ranging from [-1, -1] to [1, 1].

1

-1

-1 1

x

y

Canonical View “Volume”

• Actually, a canonical view volume is a 3D cube
ranging from [-1,-1,-1] to [1,1,1] in OpenGL.

– Its coordinate system is NDC.

• Its xy plane is a 2D “viewport”.

• Note that NDC in OpenGL is a left-handed
coordinate system.

– Viewing direction in NDC : +z direction

• But OpenGL’s projection functions change the
hand-ness – Thus view, world, model spaces use
right-handed coordinate system.

– Viewing direction in view space : -z direction

Canonical View Volume

• OpenGL only draws objects inside

the canonical view volume

– To draw objects only in the camera’s

view

– Not to draw objects too near or too far

from the camera

X

Do we always have to use the cube of size 2

as a view volume?

• No. You can set up a view volume of any size and draw
objects in it.

– Even you can use “frustums” as well as cuboids.

• Then everything in the visible volume is mapped
(projected) into the canonical view volume.

• Then 3D points in the canonical view volume are
projected onto its xy plane as 2D points.

• → Projection transformation

Projection in General

• General definition:

• Mapping points in a n-dim space to a m-dim space

(m<n).

Projection in Computer Graphics

• Mapping 3D coordinates to 2D screen
coordinates.

• Two stages:

– Map an arbitrary view volume to a canonical view
volume

– Map 3D points in the canonical view volume onto
its xy plane : But we still need z values of points
for depth test, so do not consider this second stage

• Two common projection methods:

– Orthographic projection

– Perspective projection

Orthographic (Orthogonal) Projection

• View volume : Cuboid (직육면체)

• Orthographic projection : Mapping from a cuboid view

volume to a canonical view volume

– Combination of scaling & translation

→ “Windowing” transformation

y

x

z

y

xz

to change hand-ness (to

flip positive z direction)

• Transformation that maps a point (px, py) in a

rectangular space from (xl, yl) to (xh, yh) to a point

(px’, py’) in a rectangular space from (xl’, yl’) to

(xh’, yh’)

Windowing Transformation

(px’, py’)

(px, py)

px

py

1

px’

py’

1

=

px

py

1

px’

py’

1

=

Orthographic Projection Matrix

• By extending the matrix to 3D and substituting

– xh=right, xl=left, xh’=1, xl’=-1

– yh=top, yl=bottom, yh’=1, yl’=-1

– zh=-far, zl=-near, zh’=1, zl’=-1

Morth =

Examples of Orthographic Projection

An object always stay the same size, no matter its distance from the viewer.

Properties of Orthographic Projection

• Not realistic looking

• Good for exact measurement

• Most often used in CAD, architectural drawings, etc. where
taking exact measurement is important.

• Affine transformation

- parallel lines remain parallel

- ratios are preserved

- angles are not preserved

y

x

z

glOrtho()

• glOrtho(left, right, bottom, top, zNear, zFar)

• : Creates a orthographic projection matrix and

right-multiplies the current transformation matrix

by it

• Sign of zNear, zFar:

– positive value: the plane is in front of the camera

– negative value: the plane is behind the camera.

• C ← CMorth

[Practice] glOrtho

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = 1.

draw a cube of side 1, centered at the origin.

def drawUnitCube():

glBegin(GL_QUADS)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glEnd()

def drawCubeArray():

for i in range(5):

for j in range(5):

for k in range(5):

glPushMatrix()

glTranslatef(i,j,-k-1)

glScalef(.5,.5,.5)

drawUnitCube()

glPopMatrix()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,‘glOrtho()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

while not glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

draw polygons only with boundary edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

glLoadIdentity()

test other parameter values

near plane: 10 units behind the camera

far plane: 10 units in front of

the camera

glOrtho(-5,5, -5,5, -10,10)

gluLookAt(1*np.sin(gCamAng),gCamHeight,1*np.cos(

gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

test

drawCubeArray()

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Perspective Effects

• Distant objects become

small.

Vanishing point: The point or points to

which the extensions of parallel lines appear

to converge in a perspective drawing

Perspective Projection

• View volume : Frustum (절두체)

• → “Viewing frustum”

• Perspective projection : Mapping from a viewing

frustum to a canonical view volume

Why does this mapping generate a perspective effect?

Red: viewing frustum, Blue: objects Original 3D scene

An Example of Perspective Projection

After perspective projection

An Example of Perspective Projection

The camera view

Let’s first consider

3D View Frustum→2D Projection Plane

• Consider the projection of a 3D point on the

camera plane

34© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Perspective projection

similar triangles:

The size of an object on the screen is
inversely proportional to its distance
from camera

35© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Homogeneous coordinates revisited

• Perspective requires division

– that is not part of affine transformations

– in affine, parallel lines stay parallel

• therefore not vanishing point

• therefore no rays converging on viewpoint

• “True” purpose of homogeneous coords: projection

36© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Homogeneous coordinates revisited

• Introduced w = 1 coordinate as a placeholder

– used as a convenience for unifying translation with linear
transformation

• Can also allow arbitrary w

All scalar multiples of a 4-vector are
equivalent

37© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Perspective projection

to implement perspective, just move z to w:

Perspective Projection Matrix

• This 3D → 2D projection example gives the basic idea of
perspective projection.

• What we really have to do is 3D → 3D, View Frustum →
Canonical View Volume.

• For details for this process, see 6 - reference-projection.pdf

• Mpers=

• glFrustum(left, right, bottom, top, near, far)

– Note that left, right, bottom, top are those of "near" plane.

• : Creates a perspective projection matrix and right-
multiplies the current transformation matrix by it

• Sign of near, far:

– The values for both parameters must be positive.

• C ← CMpers

glFrustum()

gluPerspective()

• gluPerspective(fovy, aspect, zNear, zFar)
• fovy: The field of view angle, in degrees, in the y-direction.

• aspect: The aspect ratio that determines the field of view in the x-

direction. The aspect ratio is the ratio of x (width) to y (height).

• : Creates a perspective projection matrix and right-

multiplies the current transformation matrix by it

• C ← CMpers

fovy

[Practice] glFrustum(),

gluPerspective()

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = 1.

draw a cube of side 1, centered at the origin.

def drawUnitCube():

glBegin(GL_QUADS)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glEnd()

def drawCubeArray():

for i in range(5):

for j in range(5):

for k in range(5):

glPushMatrix()

glTranslatef(i,j,-k-1)

glScalef(.5,.5,.5)

drawUnitCube()

glPopMatrix()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,‘glFrustum()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

while not glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

glLoadIdentity()

test other parameter values

glFrustum(-1,1, -1,1, .1,10)

glFrustum(-1,1, -1,1, 1,10)

test other parameter values

gluPerspective(45, 1, 1,10)

test with this line

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(

gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

test

drawCubeArray()

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Viewport Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Viewport

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Viewport Transformation

• Viewport: a rectangular viewing region of screen

• So, viewport transformation is also a kind of

windowing transformation.

1-1

-1

1

y

x

Screen space

(Image space)

Canonical view volume

(looking down +z direction)

ps
pc

Viewport

transformation

: Mvp

-1 ≤ z ≤ 1

(z range of

canonical

view volume)

0 ≤ z ≤ 1

(default

depth buffer

range)

Viewport Transformation Matrix

• In the windowing transformation matrix,

• By substituting xh, xl, xh’, ... with corresponding

variables in viewport transformation,

Mvp =

(xmin, ymin)

width

height

(xmin, ymin)

width

height

glViewport()

• glViewport(xmin, ymin, width, height)

– xmin, ymin, width, height: specified in pixels

• : Sets the viewport

– This function does NOT explicitly multiply a viewport
matrix with the current matrix.

– Viewport transformation is internally done in
OpenGL, so you can apply transformation matrices
starting from a canonical view volume, not a screen
space.

• Default viewport setting for (xmin, ymin, width,
height) is (0, 0, window width, window height).

– If you do not call glViewport(), OpenGL uses this
default viewport setting.

[Practice] glViewport()

def main():

...

glfw.make_context_current(window)

glViewport(100,100,200,200)

...

Mesh

http://15462.courses.cs.cmu.edu/fall2015/lecture/introgeometry

The Most Popular Representation : Polygon Mesh

• Because this can model any arbitrary complex

shapes with relatively simple representations

and can be rendered fast.

• Polygon: a “closed” shape with straight sides

• Polygon mesh: a bunch of polygons in 3D

space that are connected together to form a

surface

– Usually use triangles or quads (4 side polygon)

Triangle Mesh

• A general N-polygon can be

– Non-planar

– Non-convex

• , which are not desirable for fast rendering.

• A triangle does not have such problems. It’s
always planar & convex.

• and N-polygons can be composed of multiple
triangles.

• That's why modern GPUs draw everything as a set
of triangles.

• So, we'll focus on triangle meshes.

Representation for Triangle Mesh

• It’s about how to store

– vertex positions

– relationship between vertices (to make triangles)

• on memory.

• We'll see

– Separate triangles (today)

– Indexed triangle set (next lecture)

Vertex Winding Order

• In OpenGL, by default, polygons whose vertices appear in

counterclockwise order on the screen is front-facing

56 © 2008 Steve Marschner • Cornell CS4620 Fall 2006 • Lecture 11

Separate triangles

p1

p0

p3

p2

counter-clockwise order

Separate Triangles

• Various problems

• Wastes space

• Cracks due to roundoff

• Difficulty of finding neighbors

– If you want find "neighbor" triangles of t2, you have to

find all "zero-distance" vertices from t2's each vertex.

stored 6 times!

(1,1) is stored 3 times!

Example: a cube of length 2

vertex

index
position

0 (-1 , 1 , 1)

1 (1 , 1 , 1)

2 (1 , -1 , 1)

3 (-1 , -1 , 1)

4 (-1 , 1 , -1)

5 (1 , 1 , -1)

6 (1 , -1 , -1)

7 (-1 , -1 , -1)

Drawing Separate Triangles using

glVertex*()

def drawCube_glVertex():

glBegin(GL_TRIANGLES)

glVertex3f(-1 , 1 , 1) # v0

glVertex3f(1 , -1 , 1) # v2

glVertex3f(1 , 1 , 1) # v1

glVertex3f(-1 , 1 , 1) # v0

glVertex3f(-1 , -1 , 1) # v3

glVertex3f(1 , -1 , 1) # v2

glVertex3f(-1 , 1 , -1) # v4

glVertex3f(1 , 1 , -1) # v5

glVertex3f(1 , -1 , -1) # v6

glVertex3f(-1 , 1 , -1) # v4

glVertex3f(1 , -1 , -1) # v6

glVertex3f(-1 , -1 , -1) # v7

glVertex3f(-1 , 1 , 1) # v0

glVertex3f(1 , 1 , 1) # v1

glVertex3f(1 , 1 , -1) # v5

glVertex3f(-1 , 1 , 1) # v0

glVertex3f(1 , 1 , -1) # v5

glVertex3f(-1 , 1 , -1) # v4

glVertex3f(-1 , -1 , 1) # v3

glVertex3f(1 , -1 , -1) # v6

glVertex3f(1 , -1 , 1) # v2

glVertex3f(-1 , -1 , 1) # v3

glVertex3f(-1 , -1 , -1) # v7

glVertex3f(1 , -1 , -1) # v6

glVertex3f(1 , 1 , 1) # v1

glVertex3f(1 , -1 , 1) # v2

glVertex3f(1 , -1 , -1) # v6

glVertex3f(1 , 1 , 1) # v1

glVertex3f(1 , -1 , -1) # v6

glVertex3f(1 , 1 , -1) # v5

glVertex3f(-1 , 1 , 1) # v0

glVertex3f(-1 , -1 , -1) # v7

glVertex3f(-1 , -1 , 1) # v3

glVertex3f(-1 , 1 , 1) # v0

glVertex3f(-1 , 1 , -1) # v4

glVertex3f(-1 , -1 , -1) # v7

glEnd()

• You can use glVertex*() like this:

Vertex Array

• But from now on, let’s use a more advanced method to draw
polygons: Vertex array

• Vertex array: an array of vertex data including vertex
positions, normals, texture coordinates and color
information
• For now, consider vertex positions only

• By using a vertex array, you can draw a whole mesh just by
calling a OpenGL function once! (instead of a huge number
of glVertex*() calls!)

• → Tremendous increase in rendering performance!

Drawing Separate Triangles using Vertex

Array

• 1. Create a vertex array for your mesh

– Using numpy.ndarray or python list

• 2. Specify “pointer” to this vertex array

– Using glVertexPointer()

• 3. Render the mesh using the specified “pointer”

– Using glDrawArrays()

glVertexPointer() & glDrawArrays()

• glVertexPointer(size, type, stride, pointer)

• : specifies the location and data format of a vertex array

– size: The number of vertex coordinates, 2 for 2D points, 3 for 3D points

– type: The data type of each coordinate value in the array. GL_FLOAT,
GL_SHORT, GL_INT or GL_DOUBLE.

– stride: The byte offset to the next vertex

– pointer: The pointer to the first coordinate of the first vertex in the array

• glDrawArrays(mode , first , count)

• : render primitives from the vertex array specified by glVertexPointer()

– mode: The primitive type to render. GL_POINTS, GL_TRIANGLES, ...

– first: The starting index in the array specified by glVertexPointer()

– count: The number of vertices to be rendered (duplicate vertices also should be
counted separately)

[Practice] Drawing Separate Triangles using

Vertex Array
import glfw

from OpenGL.GL import *

import numpy as np

from OpenGL.GLU import *

gCamAng = 0

gCamHeight = 1.

def createVertexArraySeparate():

varr = np.array([

(-1 , 1 , 1), # v0

(1 , -1 , 1), # v2

(1 , 1 , 1), # v1

(-1 , 1 , 1), # v0

(-1 , -1 , 1), # v3

(1 , -1 , 1), # v2

(-1 , 1 , -1), # v4

(1 , 1 , -1), # v5

(1 , -1 , -1), # v6

(-1 , 1 , -1), # v4

(1 , -1 , -1), # v6

(-1 , -1 , -1), # v7

(-1 , 1 , 1), # v0

(1 , 1 , 1), # v1

(1 , 1 , -1), # v5

(-1 , 1 , 1), # v0

(1 , 1 , -1), # v5

(-1 , 1 , -1), # v4

(-1 , -1 , 1), # v3

(1 , -1 , -1), # v6

(1 , -1 , 1), # v2

(-1 , -1 , 1), # v3

(-1 , -1 , -1), # v7

(1 , -1 , -1), # v6

(1 , 1 , 1), # v1

(1 , -1 , 1), # v2

(1 , -1 , -1), # v6

(1 , 1 , 1), # v1

(1 , -1 , -1), # v6

(1 , 1 , -1), # v5

(-1 , 1 , 1), # v0

(-1 , -1 , -1), # v7

(-1 , -1 , 1), # v3

(-1 , 1 , 1), # v0

(-1 , 1 , -1), # v4

(-1 , -1 , -1), # v7

], 'float32')

return varr

def drawCube_glDrawArrays():

global gVertexArraySeparate

varr = gVertexArraySeparate

glEnableClientState(GL_VERTEX_ARRAY) # Enable it to use vertex array

glVertexPointer(3, GL_FLOAT, 3*varr.itemsize, varr)

glDrawArrays(GL_TRIANGLES, 0, int(varr.size/3))

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

glLoadIdentity()

gluPerspective(45, 1, 1,10)

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawCube_glVertex()

drawCube_glDrawArrays()

gVertexArraySeparate = None

def main():

global gVertexArraySeparate

if not glfw.init():

return

window = glfw.create_window(640,640,'Lecture10', None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

gVertexArraySeparate = createVertexArraySeparate()

while not glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Next Time

• Lab for this lecture (next Monday):

– Lab assignment 6

• Next lecture:

– 7 - Mesh 2, Lighting & Shading 1

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

